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NOTATIONS
t — time |
e — the basis of natural logarithms
j=v-1
I — the mass of the Earth
m' — the mass of the Moon
m' — the mass of the Sun

A, u', v' — the equatorial components of the unit vector directed from the

center of the Earth toward the Moon
r' — distance of the Moon from the center of the Earth
a' — mean value of r' defined in such a way that the constant term in
the trigonometrical expansion of a'/r' is equal to 1
A", ', v" — the equatorial components of the unit vectors directed from the
center of the Earth toward the Sun
r'"" — distance of the Sun from the center of the Earth
a" — mean value of r'" defined in such a way that the constant term in
the trigonometrical expansion of a''/r'" is equal to 1
a — semimajor axis of satellite's orbit
i — the inclination of satellite's orbital plane toward the equatorial
plane

(0 — the right ascension of ascending node of satellite's orbital plane
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Q, — the mean motion of the ascending node of satellite's orbital plane
e — the eccentricity of satellite's orbit
n — the mean motion of the satellite
@ — the argument of the perigee of satellite's orbit
7 o-w +
M - the mean anomaly of the satellite
R - the equatorial radius of the Earth
a = R/a

a' = R/a' — the lunar parallactic factor

a".= R/a'" — the solar parallactic factor

£, 4", F, D, —the arguments of the lunar theory

41s 4 F ,D,, ", — the mean motions of the lunar arguments
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ON THE TIDAL EFFECTS IN THE MOTION OF
EARTH SATELLITES AND THE

LOVE PARAMETERS OF THE EARTH

INTRODUC TION

At the present time, the tidal effects in the motion of artificial satellites
attract considerable attention from specialists in geophysics and celestial
mechanics, mainly because from these effects one can determine the elastic
properties of the Earth as they are observed from extraterrestrial space.

The disturbing potential pertaining to the problem is obtained as the analytical
continuation of the tidal potential from the surface of the earth into outer space.
This continuation must include parameters which characterize the earth's elastic
response to tidal attraction by the moon and the Sun. There are in use at the

present time several versions of the exterior tidal potential.

In setting a priori the tidal potential in the form of a functional linear in
the elastic impulse responses of the earth we are being guided by our previous
expansions and also by earlier works on the theory of tides. In our previous
work (Musen and Estes, 1971), (Musen and Felsentreger, 1972) we expanded
the exterior tidal potential into a sum of products of spherical harmonics in
Maxwellian form. The first factor in each product depends upon the rectangular
coordinates of the satellite and the second upon the coordinates of the disturbing

body.



The elastic parameters of the earth were introduced in the form of factors
(Love numbers) attached to harmonics in the expansion of the potential. The
simplest assumption about the Love numbers is that they are the same for all
spherical harmonics of a given degree. Such an approach was taken by Kozai (1965),

Fisher and Felsentreger (1966), and Smith, Kolenkiewicz and Dunn (1971). As
we stated before (Musen and Felsentreger, 1972) this approach is equivalent to
introducting "global' Love numbers obtained by a double averaging process, as

applied to the local Love numbers, performed over the whole earth.

A different approach was suggested by Kaula (1969). He pointed out that
the dependence of the local Love numbers on latitude can produce noticeable
long period effects in the motion of a satellite, whereas the dependence on longi-
tude will produce predominantly small short period effects of the period of one day
or less. If we are interested only in the long period tidal effects in the motion
of a satellite, then the dependence of Love parameters upon latitude shall be
taken into consideration before we start the analytical continuation of the tid:.l
potential into outer space. Neglecting the dependence upon longitude is equiv-uent
to averaging the local Love parameters along the parallels, and not ove> the
whole earth. The resulting expansion of the exterior tidal potential is, as before,
a sum of products of spherical harmonics. Each pair of harmonics of a given

degree and order has the identical Love number.



It is of interest to note that this idea can be found already in the theory of
tides by Laplace. Amongthe new approaches the one developed by Munk and
Cartwright (1966) deserves special attention. The tides are represented by a
sum of convolutions between the spherical harmonics and the earth's impulse
responses. The impulse responses replace the Love numbers. The earth's
tide is a very complicated process. Continuous masses are moving and the
mutual influence of adjacent (in time and space) configurations takes place. The

evidence of such "cross-effects' is supported by the observational material,

A theory should be devised to include the influence of these combined cross-
effects on the motion of an artificial satellite. It is clear that the resulting

potential cannot be obtained from the 'first principles' of celestial mechanics.

There is a time lag in the exterior tidal potential acting on the satellite.
This fact, together with the possibility of interpreting Love numbers ‘as Dirac
impulse functions leads to a representation of the tidal potential in the form of
a convolution between the Love impulse responses and the spherical harmonics

depending upon the coordinates of the moon (Sun). This is a general form of the
exterior tidal potential which includes the influence of past configurations on
the motion of the artificial satellite. The impulse responses which replace the
delta functions mentioned previously are, in all probability, continuous, fast

decreasing functions. They are determined from the condition that the



mean quadratic error between the observed and the computed tidal effects

shall be a minimum, which leads to a system of Fredholm integral equations.
The transformation of these equations from the time domain to frequency domain
provides us with simple relations which can serve as a check for the existence

of Love numbers.

We formulate the integral equations and the corresponding relations in the
frequency domain for the main problem only, considering harmonics of the second
degree in the tidal potential. In the present exposition we resort, as in our
earlier work, to an expansion into trigonometric series with arguments

£, 4, F, D, " of the lunar theory and Q , 7 of the satellite.

TIDAL DISTURBING FUNCTION

4

Let A, u', v' andA”, u", v” be the equatorial components of the unit
vectors directed from the center of the Earth toward the Moon and the Sun,

respectively.

"

Let r' and r” be their distances from the center of the earth and a’, a
be the mean values of r’ and of r”, respectively, defined in such a way that
the constant terms in the trigonometrical expansions of the parallaxes a’ /r’

and a” /r” are equal to 1.

The basic spherical functions which appear in the expansion of the exterior
lunar and solar tidal disturbing functions associated with the "main problem"

are (in Maxwellian form):



for the "lunar'' disturbing function:

¢y (1) = <f~:> v+ 3 A",
\3
SRONE T o
a’ ¥
)y () =<7) (' + A2
\3
Xy (V) :(%) (v = j A2

and, similarly, for the "solar'" disturbing function:

" 3
C(')’ (t) = <a_”> (1 -3 7/"2),

r

3

"

ety (1) (—) v (W 4§ A,

=D

" 3
Cfl (t) = <E_> y" (lu,” - J }\”), (111)

rII

"

3
" a " : "
Cy, (1) = <;7> (v" +§ A2,

" 3
n a " : "
¢l (t) = <F> (" = j A"y?



Introducing the elastic impulse responses of the earth,

wy (), wy (t), w, (1),
we can rewrite the exterior tidal disturbing functions acting on the artificial

satellite as given in our previous work (Musen and Estes, 1971) in the following

compact form:

vl

n? a? «' {(1 - % sin? '1) (cg * W)

+

[e*ifl (ciy * W) + o i (c!, * wl)]‘ sinicos i 2"

_ [e+2jQ (Ciz * Wz) + e—ziQ (0_12 * w2)]- sin? '1} (1 - e2)_3/2,

no_ 2 .2 n 3 . 2 - "
VP =n® a®«x {(1—Esxn 1> (co * W)

-+

[GHQ(C:l *w) +e‘iQ(cf1 *w)] sin i cos i

- le*2iqer *wy + € 23 (er) Fw)] sintiy (1- 232 (2
where

[} n

m

k' =—a? a'3, K" =0 a? o"3
i} m

and the asterisk designates the convolution, taking only the past into account:

e«
C;c*w[k|': J c}: (t-T)W|k|,(7')d7',
0

[o4]

c, *W|k|-: j c, (t=17) w[k|_('r)d7
0

k=0, £1, £2



For combined luni-solar tidal effects the disturbing function becomes:

V=n?a?«’ {(l —g sin? '1> (¢4 * Wy)

+ {e+iQ (Cpy ¥ W)+ eil (cy * wl)]‘ sinicosi
S [et2ife,, *wy) 42 i (e, % wy)] sin? i} (1-eH¥2% ()

where we set

and

All the functions

',oc¢”, ¢ (s=0, £1, +2)

S s s

are expanded into Fourier series with numerical coefficients and arguments
£, 4 F, D, T, Q and 7.

The details of this expansion (by electronic computer) are described in our
previous article already quoted. In (2') - (2) we retained only the long period
and the secular terms. The short I;eriod terms, with periods equal to the period
of revolution of the satellite or less, are removed by means of averaging the
disturbing function over the instantaneous orbit of the satellite. In fact, we

are interested only in the long period tidal effects in the elements of the
satellite and therefore eliminate the secular effects in » and ( by omitting

the constant terms in the Fourier expansions of c(') s €y and Coe



We shall continue, however, to use the same notations, Co s C'(',, c, , for the

corresponding series with the constant parts omitted. We set:

~
al (ty= | ei*fc!(t)dt
LY

al () +§ B ()

r

a" (®) = etisfle” (tydt

ol (t) +j B (1),

a, (t):,[ eiSch (ty d t =a_ (t) +j B, (1)

where
— [ " — [ "
Ay = Qg + K &g, /BS_ﬁS+K/BS

o, = a_ ., Bs:—ﬁ_s

From (1') we deduce:

3
!
= oty f(‘) v (u cos Q=N sinmydt,

H

n3
- B, :J(g—l) v (u' sin Q+ A’ cos ) d t,

!
+
1 r

A3
alzza’ =J (a_'> [(w'2-A%cos20=-2N pu' sin20]-dt,

\3
L, = - B, :J (a_'> [(u'? =A%) sin2Q+ 2N p' cos 20l-d t.

r

(3)

(4)



Similar expressions can be deduced for a”i 1 Bigs aj,

»_and ,8§2. The

integration of Fourier series in (3) and (4) is performed in a purely formal

manner, without adding constants of integration. As a result, Fourier series

for a!, a’, a_ contain only purely periodic terms.

We deduce after some easy transformations:

fejSQ (c! W) dt=a *(wls[,ejsﬂlt),

fest (c! * W’Sl') dt

fejSQ (cg ¥wjy)dt

0

m\

*
TN
_=

&

i
w
w
*
e
_E
w
[

As before the convolutions are computed taking only the past into consideration

and the integration with respect to time is performed in a formal manner.

PERTURBATIONS IN THE ELEMENTS DUE TO TIDES

Making use of the Lagrange equations

déi

Q)
<

dt

déQ

a?/1 - e2sini

)
2

Q)
<

[+%)
'™

1
-

dt

na?2/1-¢e?sini



tg1

dém_ 2 3V /i-é 3y

dt  na?2/T-e? 9i pate O€
désM__1-e 3v_ 2 [ 3V (5)
dt nale %€ a2\ 0a)

We deduce for the tidal perturbations in the frame of the main problem:

d81:_ nk'j {[e*jQ(cﬂ*wl)-e'jQ(c_l*wl)]lcosi

(1-e?)?

-2 [e+250(c+2 * w,) -e'ziQ(C_2 *wz)]'sin i}

dé !
Q:+ nx {- 3 (¢, *wy) cos i
dt (1—82)2

+ [eti0 (Cyy * Wp) + oill (c_y *wpl-(cosec i -2sini) (7)

-2 [e“”Q(c+2 *w,) + e’:-”'Q(c_,2 * wy)]-cos i},

dém _ n«' 3 2 : .
1T _+(1-e2)2 {+_(5cos 1-2cosi=-1)(c,*w)

+(5cos?i+3cosi-1 tgf-[e+jQ e, *w)+e e Hw]
5 (4y * Wp) (e 1)

~-(5cos i+ 3)(1-cosi) [ 2i Q2 (Cyp ¥ Wy) +e_230(c_2 * Wz)]} (8)

10



dsM 3

I

n«' 3 .
—_Al1-Zsin? j *
T 62)3/2 {( 3 sin 1) (Co wo)

+ [etiQd (Cop ¥ W) + il (c.y *w)]-sini cos i

_ [€+2JQ (CQ* w2) + e_zJQ (C_2 * W2)] Sln2 1}

After the integration we obtain:

+2j Q) -2j
» [%* (v, 5% o, (er”Ql‘)]sini} | (10)

8772-{- n«' i " 2. Lo
(1_e2)2_ {2(a0 Wy) (S5 cosi~2cosin~1)

+i {2t -t i
+[a+1* (wle 1)+a_1"‘ (wleJ 1):‘ (5c057i+3cosi-1)tg;_

-2 [a+2 * (w2 e+2let) +a,* (w2 e_zjﬂlt)] (5cosi+3)(1l-cos i)} (12)

11



SM = ___1_{(1 3sim i) (3, * W)
(1 - e2)3/2 2

+j -5 §) ¢ L. )
+a+1* LA +a_1* w, e Sin 1 cos 1

o (%) ey oy 0] s
+ a+2 W2€ +a_2 W2 sin® 1

INTEGRAL EQUATIONS FOR THE IMPULSE RESPONSES

We determine the impulse responses fromthe condition that the mean quadratic
error between the observed and the computed tidal perturbations in the elements
shall be a minimum. The application of this principle leads to a system of
Fredholm integral equations of the first kind for the impulse responses. As we
stated before all functions with which we operate in the computation of the tidal
effect and in the formation of the iritegral equations are given in the form of

Fourier series with numerical coefficients.

Such a form facilitates greatly the computation of mean values of the

form

+T
E[f(t)=1lim LI f(tydt
2T |

T—® T
and of the cross~ and autocorrelations
3, ¢ (M =E[a (t+7)a; (O]
=E [a; (t) a} (t - 7],

which we introduce in the exposition. In the process of computation of a ()

only terms with the identical arguments in ap( t) and ag (t) produce a non-zero

12



term in the cross-correlation. One of us (R. E.) developed a program for the
computation of a,q in the form of Fourier sefies. The arguments in the output
are linear combinations of the arguments 4, 4', F, D, ", 7 and Q, but with t
replaced by 7 and with the constants of the phase omitted, For example, making
use of (10) we deduce integral equations for w, and w, by minimizing the

quadratic functional:

.. . ® Q. -} T
J=E]61i+]js f {I:a,rl (t -7 e+J L. a,(t-7)e JQI]_ w, (T) cos 1
h .

2

i Q.7 -2iQd. 7 .
) [a+2(t_7)e+21 ! _a_2(t—'r)62] 1] w2('r)sini}d7 , (14)
where
s = n«'
(1 - e)?

and & i(t) are the observed tidal perturbations in inclination. After some easy

transformations and taking

a (t) =a, (t)
into account, we obtain assuming that the order of averaging and of the integration

can be interchanged:

J=E |3 i|2 +2s f [/ﬁlo (7)Y wy, (T) cos i +’E20 (T) wy (T) sin i} d 7
0

- s? J J [ff',u (1, v) w () w, () cos? i
0 0

=24, (1, v) wy (1) w, (¥) sini cos i
+4,, (T, V) wy (T) w, (v) sin? i} d7 dv

(15)

13



Taking the gradients with respect to w, and w, and setting them equal to

zero, we obtain;

+0
Lo (M) = s f (£, (7 vy wy @) cosi-4,, (7,v) w, (¥) sinildv =0 (16)
0

@ow>-SJ‘[-%2@,ﬂwlw>wsi+%20»WW2@>““HdV=Q””
0

As we will see later
Ly (T2 V) =0, (17

and we obtain a pair of uncoupled integral equations

w

£, (T) ='scos i J £ (7o vyw (v)dv =0 (18)
0
{20 (7)) -~ ssini J {22 (s VYw, (v)dv=0 (19)

0

It is of interest to note the presence of the orbital inclination in these equations.

The explicit form of £,,(7), €,5(7), L, {7,7), £,,(7, v) and 4y, (7, V) are:

Yo (M) = [+ e+jQIT k., (M) - e_jQIT k_, (T)] , (20)
Lho (M) = 2] [— €+2jQIT ky, (7) + e_2jQIT k_, (’7‘)] , (21)
where
k, (M=EBi(t)a, (t-nl (22)
kyy (M =E 81 (t)a, (t-nl (23)
k, (M=E[i(t)a, (t-7)], (24)
(25)

k,, (M=E[81i(t)a, (t-7],

14



and

+jQ] (T+v)

L, (T v)=+e a,, 4 (T=7)

-jQ (m=v)
e ! 81,41 (T=7)
+i O (T-v)
-e ! 1,-1 (T =)
=i, (T .
+e’ 1(7F) a_y 4, (T -7) (26)
1 +j () +2v
5/612 (1, v)=+e’ 1T )a+2,—1 (T-v)
iy (m-2v)
- 3,5 41 (7 - V)
+i 0 T=
e (7T a, ., (T-v)
=iy (t+2v)
+ e a_, 4 (7 - v) (27)
1 +2j ) +
Z'ﬁn (T, V) = + ¢ By a, _, (T-7)
—?jQ (T=v)
- ! 8,0 40 (T=7)
+2i Q) (T-v
_e 2l )3-2,-2 (T - V)
-2iQ(r+v
ye Y 8, 4n (T=7) (28)
Substituting
ak:ak+j5k, k=211, +2
into (26)-(28) and defining:
p11 (T):E[al (t+7—) a‘l (t)-/gl (t+7-)/81 (t)]’
Ay (7) = E Loy (t +7) B, (t) + B, (t+7)a (),
r,, (M=E [a1 (t+7)a (t)+ 8 (t+7)5 (],
(29)

s;; (1) =E [al (t+7) By (t) = £, (t+7)a; ()],

15



Pys (7) = E [a, (t +7) a; (t) - B, (t +7) By (O],
9, (7) =E (B, (t +7)ay (t) +a, (t+7) By (D)5
r,, (7) =E la, (t + 7) a) (1) + B, (t +7) By (D)),

Sy, (M) =E [a, (t+7) By (1) =B, (t+7)a (t)], (30)

Pyy (T) = E la, (t +7) ay (£) = B, (t +7) B, (1]
Ay, (T) =E la, (t +7) B, (1) + /32 (t +7) a, ()],
ry, () =E la, (t + 7 ) a, () + 8, (t +7) B, ()],
Sgp (T) =E [B, (t + 7Y a, (1) - a, (t +7) B, ()], (31)
we deduce:

By (1, V) =+ 2 [py, (T -v)cos Oy (T +v) =y (T=v)sinQ (7 + Q)

- ry, (T-v)cos Ql (T-v) + sy, (T-v)sin Ql (T ~v)) (32)

{12 (1, V) = + 4 [p12 (T -v)cos Q (7 + 2v) -q, (T-7) sin Q, (7+2v)

-r,,(T-v)cos Ql (T=2v)+s,, (T—L)Sinﬂl (T-2v)] (33)

fﬁn (7, v) = 84[p22 (T~v)cosQ, (T+2v) - Qy, (T =v) sinQ, (T +27V)
- 1,, (T -v)cos Ql (T=2V)=5,,(T~v) sin Q1 (7 -2} (34)
The algebraic computations performed on the machine by one of us (R. E.)

yield
Py (M) =G5y (T) = Py (7) = qQpy (7) =1, (T) = 54, (T)

TPy (T) =gy (T) =1y (1) =0

and the equations (32)-(34) become

16



{11 (7, v) == 2r1,,(T-v),cos Qu(T-v)+2s, (7T =-v)sinf, (7 - vy,
Ly (1) =0,

{22 (T, ¥) = =85, (T ~v)sin(Q (7 -2v).

The equations (18)~(19) can be put into a simpler form by transforming them
to the frequency domain. In the actual computations with the assumed numerical
accuracy the kernels of the integral equations, f[’,” (7,v) and 10,22 (7, v), also
£,0(m)s L (7)), as well as a,q (7 -v), a,(7) (p = 0, 1, £2) are trigonometric
polynomials with arguments linear in 7 and » and, consequently, they are
almost periodic. In transforming an almost periodic function g(t) to the frequency

domain the averaging operator E_ takes the place of the Fourier transform,

+T
G(f)=E, [eiftg(t)] = lim 2%[ e ift gty dt,
-T

T—

and G(f) is different from zero only if f is a Fourier exponent of g(t).

We are not presupposing, however, that w, (), w,(v) are almost periodic.
In the transformation of (18)-(19) to frequency domain the standard Fourier

transforms
1 +0
W (fy = — -jfv
1() 27_, [me Wi(V)dV

will appear in the final result.

17



From (26)-(28) it is evident that the integrals in the equations (18)-(19) are
sums of terms of the form:

(T-v)w@)dv

P.q

40
g [,
0

Taking into account that hg:‘; (7) is an almost periodic function of = and

assuming that the operators of averaging and of integration commute, we have:
s o]
—jT(f—mQ) +in{l v
HYoY (6) = J E, [ N R T Y
0

and, after the change of variable under the E_-sign,

[e-j'r(f-le)

o (D =27E, 0 ] Wi mam

=-jT -m{}
=2mE, {e’ (f V) E, [ap (t+7)a ()W [f - (m+ n)Ql}}

where W(f) is the Fourier transform of w(v).
In the case of almost periodic functions the order of averaging can be inter-

changed and, after another change of variable, we deduce:

e (M =2mA G mO) A (- fama)WIF-mama) &

Similarly we obtain for

ko ()= E, [§ i (t+7) a, ()]

18



the relation:

E

~ifrefmQ T
- e

where

¢ (f) =E_[e”

k (m)] =eGHA (-6

e s i (t)].

By applying (35) and (36) to (18)-(19) and taking (20)-(28) into account we deduce,

instead of integral equations, the following relations in the frequency domain:

+ A,y (+ f - Q) A (-
_A+1 (+ f +Q1) A—1 (‘
- A_1 (+ f - Ql) A;rl.(—

+A L GErQD AL (-
1

7 j s Cos i

—

tAL(+f-2Q)A, (+f

~AL, (fe2Q) A (- f

+

A, (+E-200)A, (-f

+A, (+f+20)A (- f

1 T §b (f) [A+2 <—

47 jssini

fF+QHYW (+f-20)
f-QHw (+1)
f-le)W1 (+ £)
fF-QpW (+£+20)

- ¢ () [A, (- ) - A, (- D)5

(37)
20) W, (+f-40))
20,) W, (+ )
2.0,) Wy (+ )
QQI)W2 +f+40)
£y -A, (- D (38)

where A, (+f+m (1,) is the Fourier coefficient of the term exp [j(= f + m antl

in the trigonometrical expansion of a (t).

19



If the impulse responses w,(t) and w, (t) degenerate into the delta-functions

w, (T) = w, S (71 - T

w, (T) =w, & (T - 7,) (39)

the integral equations become

1t
o

i (M =sw L, (7, 7)) cos i

(40)

It
(o]

{20 (T) = s w, {22 (1, T,) sin i
For the Fourier transforms we have:

W -
ifry

1
and

w -jfr
Wo(f)y=—2¢ ' 72
2() 277e

and the relations (37)-(38) become:

+2j Ql‘rl

W, {[A” (+£-0) A, (-f+0)

FA, G EHQDA (- f-Q) 9'2"91’1-_\

A G FHQDA CE-Q) v A G E=Q)A, (-4 Ql)]}

e+jf’rl
== (O A, (- )-A, (- D] (41)

sjcosi
and

+4j ()
W, {[A+2 (+f-20)A,(-f+20)e iiyTo

~-4i 0
A, +f+20)A, (-f-20)e " "’2]
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-[As G fr2apA, -f-20)

+A, (+F-20)A, (-f+ 291)]}

+jfTy

=2 d (D) (A, (- ) - A, (- D) (42)

s jsini
These equations show the existence of relations between the Love numbers, time

lags and Fourier coefficients in the expansion of the tidal effects.

We deduce the integral equation for w, (t) by minimizing the quadratic

functional:

I

J o

+i Qe =it . -
a,, *lw e -a_ * (w]e ) (csci-2sin 1)
+2i Q -2j 82
2 I:a+2 * (wge : lt) ~a, * (er 2 ’t)] cos i} |‘2

which represents the mean quadratic error between the observed and computed

E|8Q(t)—s{-3ao*w cos i

-+

tidal perturbations in (. After some easy transformations and taking (17") and

(26)-(28) into account we can rewrite the last equation in the form:
+o0
[ 2 .
T =E({sQ)*) +6scosi f Ko (Y wy (Tyd 7T
0
+0 400
+9s?2cos?i J J A, (T=V)w (T)w, () d7dv
0 0

_s? f f [(coseci - 2sin 1)2 {11 (7, v) w, (7) w, (v)
0 0

+4costid,, (7, ) w, (T) w, (M]-d7dv, (43)
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where we set
koo (M) =E [8 Q(t) 2 (t - 7).

Taking the gradient of (43) with respect to w, and setting it equal to zero, we

obtain the integral equation for A

ko (7) + 3 scos i J B (T=V)w, (v)dv =0 (44)
0

If w, (v) degenerates into a delta-function,
wy (T) = w, o (T - 7o)

then (44) takes the form
koo () + 3 wy S cos. iayg, (T~ 74) =0, (45)

which can be used to obtain the Love number w, By transforming (44) to the

frequency domain we have
Ay (=)Ao (+ ) Wy () =21 8 (D) A (- D)

or, taking

Ay (- )= A (+ )

into consideration, we obtain a simpler relation

1
Ay (FY W, (f) = 7= 0 (D) (44"
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where
o (fy=E, [€1ft § 0 ().

The equation corresponding to (45) is:

w, A, (f):e+jfT°6’(f) (457)

and it gives the connection between the vae number w 0! the time lag 7 and the
Fourier coefficients in the expansions of the tidal effects in the node of satellite's
orbit. The relations (40) and (45) or (41), (42) andl(45') can be helpful in checking
the existence of Love numbers from the observations of the long period tidal effects

in the motion of satellites.

CONCLUSIONS

The tidal effects represent a superposition of a large number of periodic
terms. In the case of nearly equal periods the analytical expansion can easily
establish the precise form of arguments and the relative significance of amplitudes.

Long period and resonance terms are especially important, For example,
the rotation of the lunar orbital plane produces a term of 18 years period in
tidal perturbations of the ascending node of the satellite's orbit. If these
effects are not properly taken into account they will contaminate the coefficients
of the zonal harrﬁonics in the geopotential.

We do not want to oversimplify our statements. The present theory is not
a proof, or a disproof, of the existence of Love numbers. However, it must be

stated, at the same time, that no empirical fit, independently of how successful

23



it is at the moment, can be considered as a complete replacement for theoretical
thought or a final solution. The long term observations will require a more
subtle approach, approximately along the lines presented here. We have to
expect that, because of the rotation of the lunar orbital plane, the tidal effects

in the motion of some satellites will increase.

These larger values of the tidal effects and the prolonged observations will
stimulate a further cooperation between theoretical and numerical directions of

work in the coming years.
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Multiples of Multiples of

Coefx 104 Period Coefx 104 Period
of cosine 47 Ay7. Fir Dy 7 Q7 in Days of cosine ’[)17 ’3'17 R7 Dy Tyt Q7 in Days
2 ( 0 i 1 i i 1) 164259 44 (O i i 1 i-1) 110738
49 (0 1 =1 i i 1) 836392 2368 ( 0 i =1 1 1 ~1) ESe 4ES
4 (1 -1 1 -1 ~1 1) 406 660 4 (0 2 0 2 2 1) 166 2GE
1243 ( O 2 C 2 2 =1) ile758 648 ( O 2 0O O 2 =1) 57736
i (o 2 =~2 2 2 =1) 86578 22 (1 e 0 2 2 -1) 8o 241
3( & =2 C =2 -2 1) 200511 126785 ( O 0 0 (o] 0 1) 844 428
i (1 0 C -2 0 1) 234106 5 ( 3 0 0 =2 0 =i) 531e 046
g3 ( 1 0 C 0 0 1) 406 905 24 ( 1 0 0 0 0O =1) 206774
14 ( © i C 0 0 i) 0Ge BCS s (0 i 0 0 0 -1) EE 577
89 ( O 2 C o 2z 1) 57e¢ 016G i7 ¢ 0O 3 0 4] 2 ~1i) 4G4 £ES
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Table I S, (7)

Multiples of Multiples of
Coefx 104 Period Coefx 104 Period
of sine 47 47 F7 Dyr 7 Q47 in Days of sine 47 447 §7 D T Q7 in Days
-2 (0 i 1 i i 1) 166259 44 (O i 1 i i -1) 11s 738
-“49 ( 0 1 -3 i 1 i) 834392 2388 ( 0O i =1 1 1 =1) ES,8 85
-4 (1 =1 1 =1 =% FO ] 400 660 =4 ( 0 2 0 2 2 1) 1€e 25 E
1243 ( 0 2 C 2 Z2 =1) 1ls788 5489 ( 0 2 0 0 2 -1 57¢ 736
1 (0 2«2 2 2 =31) B6e 578 22 ( 1 2 0 2 2 =}1) Be 241
=3 (1 -2 C =2 -2 i) 200511 =12678% ( 0 0 o 0 0 : 3] B840 428
=1 ( 1 0 C =2 0 1) 236106 5 (1 0 0 -2 0 ~1) Sle04d
“-G32 ( 3 4] C 0 0 i) 400 905 24 ( i 0 0 0 0 ~-1) 2Ce 774
-14 ( © i C Jd 0 1) 0%e 8065 5 (0 i 0O 0 0 =1) €CBe 577
=89 ( 0 2 € 0 2 1) S7.01% 17 (0 3 0 0 2 ~1) 4S,E&¢55
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Period
in Days

106321
34,288
156277

7¢ 508

Se S01
2Ge1 02
iCe 672
Q2478
260656
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S,2(7)

Coefx 104

of sine
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